STRUCTURAL STUDIES BY NUCLEAR MAGNETIC RESONANCE—XI

CONFORMATIONS AND CONFIGURATIONS OF OXIME O-METHYL ETHERS

G. J. KARABATSOS¹ and N. HSI²

Department of Chemistry, Michigan State University, East Lansing, Michigan

(Received in U.S.A. 14 June 1966; accepted for publication 19 July 1966)

Abstract—Conformations and configurations were assigned to several aldehyde and ketone oxime O methyl ethers from analysis of their 60-Mc. NMR spectra. Interpretation of the data from the *cis*-isomers (methoxy *cis* to hydrogen) of the aldehyde derivatives in terms of rotamers I and II, whereby a single bond eclipses the double bond, led to the following conclusions: For α -mono-substituted derivatives, when R was varied from methyl to t-butyl, ΔH° for $I \rightarrow II$ varied from $\div 390$ to $\pm 4,5000$ cal/mole. A similar range was obtained for α, α -disubstituted derivatives. Interpretation of the data from the *trans*-isomers led to the conclusion that, whereas I is the only significant rotamer for α, α -disubstituted derivatives, for α -mono-substituted I and III are equally important.

INVESTIGATIONS concerning rotational isomerism about single bonds joining sp³ to sp² hybrydized carbon atoms have showed that, when X is carbon $(Y = hydrogen)^3$ or oxygen (Y = hydrogen, methyl, ethyl or halogen),⁴ the stable rotamers are I and II, whereby a single bond eclipses the double bond. No studies have been reported when X is a substituted nitrogen.

Our interests in problems arising from restricted rotation about single, double and partial double bonds, and particularly in the general problem of the relative stabilities of I and II as functions of R, X and Y, have led us to examine the NMR spectra of oxime O-methyl ethers (X = NOMe). Because of configurational isomerism about the C=N double bond, these compounds are suitable models to study the relative stabilities of I and II not only when the tetrahedral carbon is *cis* to the lone electron pair, but also when it is *cis* to the methoxy group. In the latter case, I and II may be sufficiently destabilized to make II and IV competitive in stability with I and II. Cyclopropanecarboxaldehyde⁵ and ethyl α, α -diffuoro- and α, α -dichloroacetates⁶

¹ Fellow of the Alfred P. Sloan Foundation,

¹ Lubrizol Fellow, 1964-65.

- ⁸ L. S. Bartell and J. P. Guillory, J. Chem. Phys. 43, 647 (1965). It was suggested, Ref. 4, that in the liquid phase cyclopropanecarboxaldehyde may exist in conformations I and II.
- * T. L. Brown, Spectrochim. Acta 18, 1615 (1962).

^{*} A. A. Bothner-By and H. Günther, Disc. Faraday Soc. 34, 127 (1962), and Ref. cited therein.

⁴ G. J. Karabatsos and N. Hsi, J. Amer. Chem. Soc. 87, 2864 (1965), and Ref. cited therein.

IHLI
O-METHYL
OXIME
OF
(-values)
STHIFTS
CHEMICAL
TABLE

			TABLE 1.	CHEMICAL	L SHIFTS	(T-VALUE	s) of ox	IME O-MEI	HAL ETH	ERS				
	RIRIC NOMe			ł,))"H	CH,)	H ₃ (CH.)	H _a ((CH))»́(Н	CH,)	8	'H,
Å	R	Solvent	cis	trans	cis	trans	cis	Irans	cis	trans	cis	trans	ŝ	trans
H	Mc	Ncat	2.70	3.35	8-27	8-27	•						6.20	6.27
Н	Mc	CC	2.77	3.45	8·25	8·21							6,23	6.32
H	Me	C,H,	2.98	3.55	8-47	8.55							6.20	6.26
H	CH, CMe,	Ncat	2.65	3.39			7.75	7-93					6.18	6.13
Ŧ	CH, CMe,	U U U	2.73	3.45			7-84	2.98					67.9	6-25
Ξ	CH.CMS	C.H.		3-33			LL·L	Š					6.16	6-13
H	CH.ph	Ncat	2-58	3·28			6.37	9.9					6.18	6.13
H	CHaph	CC	2.67	3.37			6.40	6.57					6.22	6-13
Н	CHiph	C,H,		3-33			6.42	6-72					6·18	6.12
H	CHMe	Ncat	2-77	3-61					6-92	7-57	8 8 8	8-93	6.20	6.14
H	CHMe	CCI.	2.87	3·72					7-03	7.62	8.99	8-93	6-31	6:25
H	CHMe	C.H.		3.67					6.9	7.75	9-17	9.12	6.18	6.17
I	CHEt,	Neat	2.90	3.73					7.16	7.92			6·18	6-15
H	CHEG	บี่วิ	2.98	3·80						7-90			6.30	6.26
H	CHEI,	C.H.	2.85	3.73					6.97	8-03			6.18	6.18
H	CH(CMe)	Ncat								8.10			6.20	
I	CH(CMe)	CCI	2·83							8·15			6-25	
H	CH(CMe,)	с , н,	2-53							8 2			6·20	
Н	\sim	Ncat	3-13	4.15									6·23	6.14
H	`~	ccı	3-03	4-25									6-30	6.21
Н	, ∧	C,H,	3.15	4-28									6 [.] 21	6·12
	- [
н	\bigcirc	Ncat	2.75	3-53					6.85	7-40			6·23	6·18
н		С,Н,	2.70	3-53					6-75	7-50			6.17	6-13
н	\bigcirc	Ncat	2.82	3.65									6-22	6.18
]													

G. J. KARABATSOS and H. HSI

Н	\bigcirc	ccı,	2.88	3.73									6.32	6.27
Н	\bigcirc	C,H,		3-62									6·15	6.13
Mc	ک و (Neat			8·22	8·20							é.	S
Me	Me	บีบี			8-25	8·21							ý.	\$
Mc	Me	C,H,			8-37	8·39							ē	80
Me	Et	Neat			8-24	8·22		7.83			86	8.96 8	6-21	6.22
Mc	ŭ	cci			8-27	8·23		7·88			8.98	<u>8</u>	6·28	6.30
Me	Ē	C,H,			8-31	8·33		7-97			9.13	86	6.12	6.12
Mc	Neopentyl	Near			8·18	8·16	7.75	7-93					6.17	6.25
Me	Neopentyl	บูว			8·23	81·8	7.82	7-98					6.27	6.33
Me	Neopentyl	C,H,			8·20	8-37	7.76	7.97					6.11	619
Mc	Benzyl	Ncat			8·32	8-33	6.33	6-57					6.12	6.13
Me	Benzýl	CCI,			8·33	8:30	6.39	6.61					6.17	6.17
Mc	Benzýl	C,H,			8:35	8·37	6-38	6.63					6 9	6·11
Mc	, 1	Ncat			8 [.] 29	8·29			6.65	7.58	9-03	8-8 8-8	6.27	6-27
Me	- Pr	บี้			8:30	8·29			6.68	7-58	9.02	8:94	6·28	6:30
Mc	T.	C,H,			8.33	8·38			6.54	7.62	9.14	9 2 2	6·18	6·18
Me	셤	Ncat			7.88								6.02	6·18
Mc	.ra	1 2			7-84								6.05	6.23
Mc	.4	C.H.			7-92								ŝ	6·18
E	Ē.	Neat					7.72	7-82			8·98	8-95	ė	ส
E	Et	SCI					1.77	7-88			8.98	8-95	Ś	2
H	<u>ш</u>	C.H.					7.73	7-93			99.6	<u>%</u>	ē	5
۲. ۲.	- Pr	Neat							6-95	7-51	8-92	8·89	è	<u>ຄ</u>
i-Pr	4	1 20							7-02	7.55	8-93	8-92	હ	2
2	L'A	C.H.							6·87	7:56	8-92	8·89	ė	80
4	Benzyl	Ncat					6.30	6.S4	6-73	7-58	9.11	86-8	6.15	6.13
-Pr	Benzyl	CCI.					6.37	6 6		7. 8	9.10	8-97	6.17	6.17
-Pr	Benzyl	C.H.					6.35	6.60	6·70	7-62	9-12	8: 8:	6·18	6.17
iPr	ph ,	Ncat							6.47	7-22	8·89	8·83	6. 0 8	6-24
i-Pr	Ъ.	cci							6-55	7-26	8 [.] 90	8-82	6-12	6·28
E.	.u	C,H,							6·54	7-24	8.87	8·83	6 [.] 08	6.22

Structural studies by nuclear magnetic resonance-XI

have been reported to have two-fold (I and IV minima) rather than threefold barriers to rotation.

RESULTS

Chemical shifts. Table 1 summarizes the chemical shifts of few representative oxime O-methylethers. The rotation used to distinguish various protons is shown in V. Each proton is referred to as *cis* or *trans* with respect to the methoxy group. Assign-

ments of hydrogens as *cis* or *trans* are based on arguments given previously. The chemical shifts, calculated from first order spectral analysis, are accurate to ± 0.03 ppm, except those of ethyl, isopropyl, cyclopentyl and diethylcarbinyl groups, whose accuracy is less.

Table 2 summarizes the difference in the chemical shifts of *cis* and *trans* protons, $\Delta\delta$, which are accurate to ± 0.001 ppm. A positive $\Delta\delta$ means that *cis* protons resonate at higher fields than *trans*, a negative reverse. The pertinent points are: (a) H₁ resonates at lower fields when *cis* to the methoxy than when *trans* ($\Delta\delta \sim -0.8$ ppm). (b) In carbon tetrachloride or in neat liquid α -methyl protons resonate at slightly higher fields when *cis* than when *trans*. Addition of benzene causes the signals to cross over. (c) α -Methylene and α -methine protons resonate at appreciably lower fields when *cis* than when *trans*. $\Delta\delta$ values of α -methine protons are comparable in magnitude to those of H₁. In all cases, except H₁ of the acetaldehyde derivative, $\Delta\delta$ values are more negative in benzene than in carbon tetrachloride.

Table 3 summarizes several $\Delta \nu (\nu_{\text{in benzene}} - \nu_{\text{in carbon tetrachloride}})$ values. A negative $\Delta \nu$ means that a proton resonates at a lower field in benzene than in carbon tetrachloride, a positive reverse. The most striking feature of the data is the lower field absorption of so many protons in benzene, which generally causes upfield shifts, than in carbon tetrachloride. The features pertinent to subsequent discussion are: (a) Benzene shifts both *cis* and *trans* H₁ downfield, except those of the acetaldehyde and cyclopropane carboxaldehyde derivatives; *cis* are shifted more than *trans*. (b) Both *cis* and *trans* α -methyl protons are shifted upfield, except *cis* of the methyl t-butyl ketone derivative. (c) Whereas *cis* α -methylene and α -methine protons are shifted downfield, *trans* are shifted upfield. Notable exception is the *trans* α -methine of the *di*-t-butylacetaldehyde derivative. (d) Both *cis* and *trans* β -methyl protons are shifted upfield, except *cis* of the ethyl group of the ethyl *t*-butyl ketone derivative. (e) Methoxy groups are shifted downfield.

⁷G. J. Karabatsos and R. A. Taller, J. Amer. Chem. Soc. 86, 4373 (1964) and previous papers in the series.

- - - -								2. N.N. 12.	Ē				L. L.
	R,	Ncat	C ₄ H ₆	Ncat	C,H,	Ncat	C,H,	Neat	C,H,	Neat	C,H,	Ncat	C,H,
Z T	Ac	-0-65	-0-57	10-0+	-0-08	-		 				8	90-0-
н н		0-83										+ 0-06	
d. H	F	-0-78										+ 0-08	+0-0+
E H	CH _a) _a Me	-0-78	-0.82									+0-01	+0.05
т. Н	·Bu	-0.74	08 [.] 0 -				0-25					+0-09	1 0-0+
L H	Veopentyl	-0-74				-0-18	-0-27					+0-05	+0-03
H B	enzyl	-0-70				-0-23	-0.30					+0-05	+0-06
т Н	۲. ۲.	-0-84						-0-65	0-85		+ 0-05	+0-09	+0-01
× ×	ac-Bu	-0-85	-0-93					-0-72	-0-89	+0-08	÷ 0-08	+0-05	8 0
E C	CH(Me)CH(Me)Et	0- 84						- 0-75	-0-90			+0-02	8
× H	ec-Pentyl	0-83	-0-88					0-76	-1-06			+0-03	80
H C	:H(Et)(CH ₁),Me	-0-81						- 0-83	-1·14			+0-03	8 <u>9</u>
H H		-1-02	-1-13									60-0 +	60-0+
75	_[
✓ Ħ		-0-78	0-85					-0-55	· 0-75			÷0-05	+ 0.04
]_												
~ H	~	-0-83										+0-0+	+0-07
۲ رو رو) e (+0-02	-0-02								
Me E				-: 0-02	-0-02		-0-24			+0-0+	÷0-01	10-0	800
Me P	F			10-0+	-0-02							-0-02	-0-02
Ke C	:HICHMe			+0-02	6 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-							-0-05	-0-05
Me C	CH,CMe,			+0-02	- 0-17	-0-18	-0-21			-10-0	-0-02*	80-0	800-
Ke C	haph de H			10-0-1	-0-02	-0-24	-0-25					- 0-01	-0-02
Me C	'HMc,			89 99	-0-05			-0-93	- 1-08	+0-01	+0.10	8	80
Me pi	ħ											-0-16	-0-14
						-0-10	-0.20			+0-03	+0-05		
Et p	д											-0-18	-0-14
<u>ק</u>	д											-0-17	-0-13
ں. ہے	'HMc,							-0-56	69-0-1	+0-03	+0-05		
с Ļ	Haph					-0-24	-0-24	- 0-85	-0-92	+ 0-13	+0.13	+0-02	+ 0-01
Pr P	Æ							-0-75	- 0-70	+0-00	10-0	-0-16	-0-14

Structural studies by nuclear magnetic resonance-XI

1083

	RIR,C=NOMe	1)4Q	4 ¹)	Δη(α-	CH,)	Δ ν (3-	CH,)	Δη(α	-CH)•	AWB-	CH.)	0,40	CH),
ž	R,	cis	trans	cis	Irans	cls	trans	cis	trans	cis	trans	cis	trans
-	Mc	+12.6	+ 6-0	+13.2	204					and the second		-1:8	-3.6
H	ដ		- 1-8										
Ŧ	ፚ		3-0				-+ 8-4*					1,00	-6.6
T	(CH,),Me	- 5:4	- 1.8				+12.6*					0-6	-7-8
H	i-Bu	-4.8	-1-2				+ 6.6*					8 1	-7:2
H	Neopentyl		-7.2			-4.2	+30					-7-8	-7:2
H	Benzyl		2.4			-1:2	0.6+					-2:4	9 9
Ľ	- Pr		3.0					-13.8	1.8	+ 10-8	+11.4	- 7.8	-4-8
T	sec-Bu	-7.2	-1-2					b -6-	11-2			- 8 4	5.4
Ξ	CH(Me)CH(Me)Et		-6-0									0-6-	-6.6
Ξ	sec-pentyl	- 7.8	-4.2					11 -4 •	+7.8			-7-2	- 4.8
Ŧ	CH(EI)(CH,),Me		-4.8					- 13·2*	+ 2.4			0.6 i	-7.8
Ŧ	CH(CMe,),	- 18-0							-6.6			- 3-0	
Ŧ	\sim	+7.2	+1.8									-5:4	-5.4
	~[
Ŧ	\sim		- 6.6									-10-2	-8.4
5),			C.7.4	10.9							4	6.6
5	L.				- 40 - 40 - 40		5 .2			1.0.1	4.7.2	9 0 1	-10-2
ÿ	CH.CMe.			- +	+ 11 4	3.6	90			-	l -	9 9 6 1	4
ÿ	Benzyl			+ 1·2	+42	- 0.6	+1-2					-4.8	-3.6
Ň	i-Pr			+1.8	+ 5.4			- 8.4	+2.4	+ 7·2	+6.0	- 6-0	.7.2
Ŵ	t-Bu			-0-6							÷1-2	-6.6	
Ř	đ			+4.8								9-0-	-3.0
ដ	.ਬ					-24	+30			+4.8	+2.4	2	ę
ភ	t-Bu					- 0.6				- 3-0		-1-2	
<mark>ድ</mark>	i-P-							06-	+0-6			;	ņ
ዲ	Benzyl					-1·2	ያ		+1.2	+1·2	+1·2	-0-6	
Ļ	đ							9-0-0	-12	+13.2	+10-2	-2.4	-3.6

1084

G. J. KARABATSOS and N. HSI

The half-widths, 0.6-0.9 c/s, of cis-H₁ differ noticeably from those, 1.2-1.7 c/s, of *trans*-H₁ in the temperature range -30° to 90° . Similar broadening and differences observed in formaldoxime O-methyl ether were shown to arise from incomplete quadrupole⁸ wash-out of J_{HCN}.

syn | anti *Isomers*. In Table 4 we have summarized syn and anti percentages, whose accuracy is about $\pm 5\%$, and free energy differences between these isomers at 40°.

In connection with the relative stabilities of syn and anti isomers we examined the UV spectra of several oxime O-methyl ethers and we are presenting some pertinent

R ₁ R	CNOMe			ΔF ₄ °
R ₁	R,	% syn*	% anti	(Kcal/mole)
н	Me	48	52	0.06
н	Et	54	46	+0-10
н	n-Pr	61	39	0-28
н	(CH ₁),Me	58	42	0-20
н	i-Bu	58	42	0-20
н	Ncopentyl	64	36	0-36
Н	Benzyl	51	49	0-02
н	i-Pr	76	24	0-71
н	sec-Bu	71	29	0.55
н	CH(Me)CH(Me)Et	69	31	0.48
н	sec-Pentyl	71	29	0-55
н	CH(Et)(CH_),Me	65	35	0-38
н	CH(CMe ₁) ₁	100	0	
н	\langle	54	46	0-10
н		68	32	0.46
н	\bigcirc	74	26	0-65
Me	Et	81	19	0.90
Мс	n-Pr	72	28	0-58
Me	i-Bu	74	26	0.64
Me	Neopentyl	76	24	0-71
Me	Benzyl	71	29	0-56
Me	i-Pr	86	14	1-1
Me	t-Bu	100	0	
Et	i-Pr	63	37	0-33
Et	t-Bu	100	0	
Me	Ph	98	2	2.4
Et	ph	84	16	1.0
n-Pr	ph	80	20	0.85
i-Pr	ph	39	61	0.58
Benzyl	i-Pr	60	40	0-25

TABLE 4. syn and anti PERCENTAGES AND ΔF_{40}° values for syn \rightarrow anti OF OXIME O-METHYL ETHERS⁴

• Data from neat liquids.

* syn is the isomer having the methoxy group cis to R₁.

* B. L. Shapiro, S. J. Ebersole and R. M. Kopehik, J. Mol. Spectr. 11(4), 326 (1963).

data in Table 5. Derivatives of the aliphatic carbonyl compounds show no strong absorption above 220 m μ . In the series alkyl phenyl ketone oxime O-methyl ethers, as the alkyl group is varied from methyl to ethyl to isopropyl, the percentages of the *cis*-phenyl isomers increase from 2% to 16% to 61%, while both λ_{max} and ε decrease.

TABLE	5.	UV	SPECTR	LA .	OF	SOME	Oxime
0-N	1et	HYL	ETHERS	IN	CY	CLOHE)	ANE

R_1R_1C	NOMe	$\lambda_{max} m \mu$	$\varepsilon \times 10^4$
R ₁	R,		
н	ph	263	13.8
Me	ph	252	10-8
Et	ph	248*	8-5
n-Pr	ph	248°	7.7
i-Pr	ph	236*	5-0

* Weak shoulder at about 262 mµ.

* Weak shoulder at about 247 mµ.

Spin-spin coupling. Table 6 summarizes the effect of temperature $(-30^{\circ} \text{ to } 90^{\circ})$ on $J_{H_1H_a}$, whose precision from several measurements is estimated as ± 0.03 c/s, of several *cis* H₁-methoxy isomers, to which we will refer henceforth as the *syn* isomers.

le 6. Si	PIN-SPIN COUPI	LING CONS	TANTS OF	NEAT LB			N ^O
ŀ	н, ом	c				2011	
R.R.C	H.			J _{w.w.}	(c.p.s.)		
R ₁	R,	- 30°	0°	40°	50°	70°	90°
н	н	5.90	5.90	5.87	·		
н	Me	5.92	5.87	5-80	5.75		
н	Et	6.05	6.02	5-90	5.80		
н	n-Pentyl	6-10	6-00	5-95	5-90	5-86	5-8
н	n-Pentyl	6.00*	5-95*	5-90ª	5-85*	5·82*	
н	i-Pr	6.40	6.38	6.30	6.20	6.20	6-2
н	t-Bu	6-85	6-85	6-83	6.80	6.60	6-5
н	ph	6.60		6.55	6-55	6-50	6.4
Me	Me	6.18	6.05	6.00	5-90	5-80	
Ме	Et	7.10	6.90	6-55	6.45	6.45	6-3
Me	sec-Bu	7.25	7.20	6.95	6.80	6.80	6.7
Et	Et	7.95	7.75	7.35	7.20	7.15	7-0
Et	n-Bu	8-10	7-90	7-65	7-40	7.30	7.2
t-Bu	t-Bu	10.40*	10-35	10.25	10.15	10-05	10-0
~	$\langle $	8.70	8-50	7.85	7 ·70	7.55	7.4
ć	Q.	8-15*	7.75*	7·60*	7·45•	7 ∙20 ª	
	$\langle - \rangle$	7.30	7.00	6-55	6-45	6-35	6·2
($\overline{\bigcirc}$	6.15	6.05	5-75	5-65	5-60	5.5

* From a 10% CCl₄ soln.

All $J_{H_1H_{\alpha}}$'s decrease with increase in temperature, except $J_{H_1H_{\alpha}}$ of acetaldehyde oxime O-methyl ether that remains constant. $J_{H_1H_{\alpha}}$ of the cyclopropanecarboxaldehyde derivative suffers the largest decrease, about 15%, in the range -30° to 90°. These couplings increase with increase of solvent polarity (Table 7), except $J_{H_1H_{\alpha}}$ of the phenylacetaldehyde derivative that decreases, and $J_{H_1H_{\alpha}}$ of the acetaldehyde derivative that remains constant.

TABLE 7. EFFECT OF SOLVENT POLARITY ON $J_{H_1H_2}$ of $R_1R_3CH_6$

	N	J _{H,H}	(c.p.s.)
R ₁ R ₂ CH ₂		cyclohexane	acetonitrile
R,	R,	(40)°•	(40°)*
н	Н	5.88	5-90
н	Me	5.70	5-90
н	Et	5-95	6-15
H	n-Bu	6-00	6-15
н	i-Pr	6.30	6-50
н	t-Bu	6.90	6-90
н	ph	6-65	6-55
Me	Mc	5-80	6.05
Me	Et	6.60	6-95
Me	sec-Bu	7.00	7-35
Et	Et	7-35	7.80
Et	n-Bu	7.65	8.05
t-Bu	t-Bu	10.35	10-45
		7.50	8.30
<		6.50	7-05
, ($\overline{}$	5-80	6-15

10% solns.

Table 8 summarizes the effect of temperature $(-30^{\circ} \text{ to } 90^{\circ})$ on $J_{H_1H_{\alpha}}$ of the *trans* H_1 -methoxy isomers, to which we will refer to as the *anti* isomers. Several features of the data are worth noting and comparing with those of the data for the *syn* isomers (Table 6). Firstly, there is an abrupt increase in $J_{H_1H_{\alpha}}$ in changing from monosubstituted acetaldehyde oxime O-methyl ethers to disubstituted, so that all $J_{H_1H_{\alpha}}$'s of the disubstituted derivatives are larger than those of the monosubstituted. Secondly, whereas $J_{H_1H_{\alpha}}$'s of the disubstituted derivatives decrease with increase in temperature, $J_{H_1H_{\alpha}}$'s of the monosubstituted derivatives increase with increase of solvent polarity (Table 9), those of the monosubstituted decrease slightly or remain unchanged, except $J_{H_1H_{\alpha}}$ of phenylacetaldehyde oxime O-methyl ether that increases. To summarize: $J_{H_1H_{\alpha}}$'s of disubstituted acetaldehyde oxime O-methyl ether substituted behave similarly to those of the *syn* isomers, while those of monosubstituted do not.

		e constanti				H,	·
R ₁ R ₂ CH	ÓN	/ic					
u /	≻= N∕			,			
л ₁	Ð	200	^>	- ^д ы, н,	(C/S)	700	~~~
<u>к</u> 1	K ₈	- 30"	<u> </u>	40*			
н	н	5.62	5.50	5.57			
н	Me	5-35	5-48	5-55	5.45		
н	Et	5.40	5-45	5.50	5-45	5-45	
н	n-Penty	/1 5∙40	5-45	5∙50	5.40	5.55	5.50
н	i-Pr	5∙42	5.50	5∙60	5.55	5.50	5.60
н	t-Bu	5.88	5-91	5·96	5-90	5-95	5-95
н	Ph	5-30	5-40	5-50	5-50	5-40	5-45
Me	Mc	7.30	7· 35	7· 35	7·20	7.15	
Me	Et	7.75	7.78	7.65	7.60	7·50	7.45
Me	sec-Bu	8-05	8.10	8.00	7·90	7.90	7.85
Et	Et	8 ∙35	8·25	8 ·15	8.00	8-00	7.85
Et	n-Bu	8·35	8·35	8·25	8·15	8·10	8-05
	\triangleleft	9 ·10	9.10	9-00	8.75	8 ∙70	8-55
	$\langle \Box \rangle$	7.20	7- 05	7.00	6∙85	6.80	6.75
	\bigcirc	7.30	7.23	7 ∙20	7.10	7·05	7.00
					R ₁ R	2CHa	
.e 9. Eff	ECT OF SOLV	/ENT POLARI	TY ON	J _{E1Ha} (R ₁ R	2 ^{CH} a H1	≻-N∕
ue 9. Eff R	ECT OF SOLV	OMe	TY ON	J _{H1H2} (R ₁ R	₂ CH _a H ₁	N´
ue 9. Err R	ECT OF SOLV $1R_2CH_{e}$ H_1	OMe	TY ON	J _{E1Ha} (R ₁ R DF (c/s)	2 ^{CH} a Hı	N´
.e 9. Err R	ECT OF SOLU $1R_2CH_e$ H_1 R_1	OMc N	TY ON	J _{H1H2} (J _{H1H2} (J _{H1H2}	R ₁ R or (c/s) Aceto	² CH _a H ₁	≻
e 9. Err R	ECT OF SOLV $1^{R_2CH_g}$ H_1 R_1	OMc R,	TY ON Cyclol (40	J _{H1Hx} (J _{H1Hx} (J _{H1Hx} hexane	R ₁ R DF (c/s) Aceto (4(₂ CH _a H ₁	≻ • N ∕
.e 9. Epp R	ECT OF SOLV $1^{R_2CH_s}$ H_1 R_1 H	POLARI OMc R, H	TY ON Cyclol (4(5.	$J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ hexane $J^{\circ})^{\circ}$ 70	R ₁ R DF (c/s) Aceta (4(2 ² CH _a H ₁ mitrile	≻-N [/]
е 9. Егт R	ECT OF SOLV $1^{R_2CH_e}$ H_1 R_1 H H	POLARI OMC R, H Mc	Cyclol (40 5. 5.	$J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ hexane $J_{0}^{\circ})^{\bullet}$ 70 50	R ₁ R DF (c/s) Aceto (4(5. 5.	² CH _a H ₁ mitrile D ⁰) ⁶	
е 9. Егт R	ECT OF SOLV $1^{R_2CH_e}$ H_1 R_1 H H H H	OMc =N R, H Mc Et	Cyclol (40 5. 5. 5.	$J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ hexane 0°)* 70 50 60	R ₁ R DF (c/s) Aceto (4(5. 5. 5.	² CH _a H ₁ mitrile D ⁰) ⁶ 50 50	≻•N^
e 9. Err R	ECT OF SOLV $1^{R_2CH_e}$ H_1 R_1 H H H H H	OMe N Rs H Me Et n-pentyl	Cycloi (40 5- 5- 5- 5-	$J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ hexane $0^{\circ})^{a}$ 70 50 60 60 60	R ₁ R DF (c/s) Aceto (4(5- 5- 5- 5- 5-	² CH _a H ₁ mitrile ^{2°}) ^a 60 50 50 60	N ∕
е 9. Егт R	ECT OF SOLV $1^{R_2CH_e}$ H_1 R_1 H H H H H H H	Pent Polari OMc =N R ₃ H Mc Et n-pentyl j-Pr	Cyclol (40 5- 5- 5- 5- 5-	$J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ hexane $0^{\circ})^{*}$ 70 50 60 60 65	R ₁ R DF (c/s) Aceto (4(5- 5- 5- 5- 5- 5-	² CH _a H ₁ mitrile ^{2°}) ^a 60 50 50 60 55	≻N′
е 9. Егт R	ECT OF SOLV $1^{R_2CH_e}$ H_1 R_1 H H H H H H H H	Pent Polari OMe =N R, H Me Et n-pentyl j-Pr t-Bu	Cyclol (40 5- 5- 5- 5- 5- 6-	$J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ hexane $0^{\circ})^{*}$ 70 50 60 60 65 10	R ₁ R DF (c/s) Aceto (4(5- 5- 5- 5- 5- 5- 5- 5- 6-	² CH _a H ₁ mitrile ^{2°}) ^a 60 50 50 60 55 60 55 60	≻n∕
е 9. Егт R	ECT OF SOLV $1^{R_2CH_e}$ H_1 R_1 H H H H H H H H	Pent Polars OMc =N R, H Mc Et n-pentyl i-Pr t-Bu Ph	Cycloi (4(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	$J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ hexane $0^{\circ})^{*}$ 70 50 60 65 10 50	R ₁ R DF (c/s) Aceto (4(5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-	² CH _a H ₁ ² ² CH _a H ₁ ² ² ³ ⁶⁰ ⁵⁰ ⁵⁰ ⁶⁰ ⁵⁵ ⁶⁰ ⁵⁵ ⁶⁰ ⁷⁰	≻n∕
e 9. Err R	ECT OF SOLV $1^{R_2CH_g}$ H_1 R_1 H H H H H H H H	Pent Polars OMc =N R, H Mc Et n-pentyl i-Pr t-Bu Ph Mc	Cycloi (4(5, 5, 5, 5, 5, 6, 5, 7,	$J_{H_1H_2}$ $J_{H_1H_2}$ $J_{H_1H_2}$ hexane $0^{\circ})^{\circ}$ 70 50 60 60 65 10 50 30 30	R ₁ R DF (c/s) Aceto (4(5- 5- 5- 5- 5- 5- 5- 5- 7-	² CH _a H ₁ mitrile ^{2°}) ^a 60 50 50 60 55 60 55 60 70 40	≻n∕
e 9. Err R	ECT OF SOLV $1^{R_2CH_g}$ H_1 R_1 H H H H H H H H	A POLARI OMe N R, H Me Et n-pentyl j-Pr t-Bu Ph Me Et	Cycloi (4(5, 5, 5, 5, 5, 5, 5, 5, 7, 7,	$J_{H_1H_2}$ $J_{H_1H_2}$ $J_{H_1H_2}$ hexane $D^{\circ})^{a}$ 70 50 60 60 65 10 50 30 70 10 10 10 10 10 10 10 10 10 1	R ₁ R (c/s) Aceta (4(5- 5- 5- 5- 5- 5- 7- 7- 7-	² CH _a H ₁ ² CH _a H ₁ ² ² CH _a ² ² ² ² ² ³ ⁶⁰ ⁵⁰ ⁵⁰ ⁶⁰ ⁵⁵ ⁶⁰ ⁵⁵ ⁶⁰ ⁵⁵ ⁶⁰ ⁵⁵	≻n ∕
e 9. Err R	R ₁ R ₁ R ₁ H H H H H H H H H H H H H H H H H H H	A constraints of the second se	Cyclol (4(5)- 5- 5- 5- 5- 5- 5- 7- 7- 8- 8-	$J_{H_1H_2}$ $J_{H_1H_2}$ hexane $J^{\circ})^{\circ}$ 70 50 60 65 10 50 30 70 10 20 20 20 20 20 20 20 20 20 2	R ₁ R (c/s) Aceta (4(5- 5- 5- 5- 5- 5- 5- 7- 7- 8-	² CH _a H ₁ ² CH _a H ₁ ² ⁶⁰ 50 50 60 55 60 55 60 55 60 70 40 80 25	≻n∕
e 9. Err R	ECT OF SOLV R_2CH_e H_1 R_1 H H H H H H H H	A contract of the sec-Bu et a	Cyclol (4(5) 5) 5) 5) 5) 5) 5) 7) 7) 8) 8) 8)	$J_{H_1H_2}$ $J_{H_1H_3}$ hexane $0^{\circ})^{\circ}$ 70 50 60 65 10 50 30 70 10 30 70 10 30 70 10 30 70 10 30 70 50 60 60 65 10 50 60 60 65 10 50 60 60 60 60 60 60 60 60 60 6	R ₁ R (c/s) Aceta (4(5· 5· 5· 5· 5· 5· 5· 5· 5· 8· 8·	² CH _a H ₁ ² CH _a H ₁ ² ² CH _a H ₁ ² ² ² ² ² ² ² ² ² ²	≻•N ′
.e 9. Err R	H H H H H H H H H H H H H H H H H H H	H Me Et n-pentyl j-Pr t-Bu Ph Mc Et sec-Bu Et n-Bu	Cyclol (4(5. 5. 5. 5. 5. 5. 7. 7. 8. 8. 8. 8.	$J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$	R ₁ R (c/s) Aceto (4(5) 5) 5) 5) 5) 5) 7) 8) 8) 8) 8) 8)	² CH _a H ₁ ⁽¹⁾ ⁽²	≻•N ∕
.e 9. Err R	R1 R2CH R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1	A contract of the second of th	Cyclol (4(5: 5: 5: 5: 5: 5: 5: 7: 8: 8: 8: 8: 8:	$J_{H_1H_{\alpha}}$ $J_{H_1H_{\alpha}}$ hexane J°)* 70 50 60 65 10 50 30 70 10 30 20 80	R ₁ R (c/s) Aceta (4(5- 5- 5- 5- 5- 5- 5- 5- 5- 5-	² CH _a H ₁ ⁽ⁿ⁾ ^{(n) ⁽ⁿ⁾}	>→N ′

DISCUSSION

Conformations of the syn isomers. Assuming that the stable conformations of the syn isomers are eclipsing (I and II), the relative stabilities of rotamers I and II can be qualitatively assessed from the dependence of $J_{H_1H_a}$'s on temperature. Assuming $J_t > J_g$, where J_t is the trans coupling and J_g the gauche, $J_{H_1H_a}$ of monosubstituted

derivatives should be temperature independent if VI_a , VI_b and VII are energetically equivalent. If VI_a is more stable than VII, the coupling should decrease with increase in temperature; and if less stable, it should increase. Similarly, for disubstituted derivatives the coupling should be temperature independent if VIII, IX_a and IX_b are energetically equivalent. If VIII is more stable than IX_a , the coupling should decrease with increase in temperature; and if less stable, it should increase. We conclude that in all cases examined the more stable rotamer is the one where the hydrogen is eclipsing the double bond.

Enthalpy differences between the two rotamers of individual compounds could be determined by either of two approaches. Eq. (1) expresses the coupling of acetaldehyde oxime O-methyl ether in terms of J_t and J_g . Eq. (2) expresses the coupling

$$\mathbf{J}_{\mathbf{obs}} = \frac{1}{3} (\mathbf{J}_{\mathbf{t}} + 2\mathbf{J}_{\mathbf{g}}) \tag{1}$$

$$\mathbf{J}_{obs.} = \mathbf{p}(\mathbf{J}_{t} + \mathbf{J}_{g})/2 + (1 - \mathbf{p})\mathbf{J}_{g}$$
(2)

$$\mathbf{J}_{\mathbf{obs.}} = \mathbf{p}\mathbf{J}_{\mathbf{t}} + (1 - \mathbf{p})\mathbf{J}_{\mathbf{g}} \tag{3}$$

of the monosubstituted derivatives, where p is the fractional population of VI and (1 - p) that of VII. And Eq. (3) expresses the couplings of the disubstituted derivatives, where p is the fractional population of VIII and (1 - p) that of IX.

A direct approach involves the simultaneous evaluation of J_t , J_g and ΔH° for each substituted acetaldehyde derivative as follows: For monosubstituted derivatives these quantities could be evaluated from Eq. (5) and for disubstituted derivatives from Eq.

(7). This approach requires $\Delta S^{\circ} = 0$ for the

$$K_{eq.}$$
 (monosubstituted) = 2(1 - p/p) (4)

$$\Delta H^{o}_{(\text{mono})} = -RT \ln \left(J_{t} + J_{g} - 2J_{obs.} \right) / (J_{obs.} - J_{g})$$
⁽⁵⁾

$$K_{eq.}$$
 (disubstituted) = $(1 - p)/2p$ (6)

$$\Delta H_{\rm (dl)}^{\circ} = -\mathrm{RT} \ln \frac{1}{2} (J_{\rm t} - J_{\rm obs.}) / (J_{\rm obs.} - J_{\rm g}) \tag{7}$$

equilibrium between rotamers. This assumption is hardly justified in cases where R is other than methyl; e.g. rotation of a *t*-butyl group should be much more hindered in II than in I.

A second approach involves the evaluation of J_t and J_g independently of ΔH° . If we assumed that *di*-t-butylacetaldehyde oxime O-methyl ether exists solely in VIII, then its J_{obs} is J_t . J_g then can be calculated from Eq. (1). These values can be checked by assuming that the t-butylacetaldehyde derivative also exists solely in VI. From Eq. (8), which expresses its

$$J_{obs.}(tBu) = \frac{1}{2}(J_t + J_g) \tag{8}$$

coupling, and (1) we can thus calculate J_t and J_g . Rotamer populations can then be calculated from Eq. (2) and (3), and ΔH° values from plots of log K vs 1/T. As mentioned⁴ an error would arise from the assumption that J_t and J_g are the same for the acetaldehyde, monosubstituted acetaldehyde and disubstituted acetaldehyde derivatives. This error could be diminished by applying a 0.4 c/s correction for each

					н	0	Лe
TABLE 10), Rotamer po	DPULATE	ONS OF	D D C	/=	N [×]	
				KIKIC	_n		
					-oc	H,	
મ્	OMe		н	J		%	
	≻N∕			$\boldsymbol{\times}$	<u>н</u>		
R ₁ R ₅ CH′							
R ₁	R,	-30°	0°	к 40°	50°	70°	90°
н	Ме	77	76	74	73	•	
н	Et	80	79	76	74		
н	n-Pentyl	81	79	78	76	75	74
н	i-Pr	89	88	86	84	84	84
н	t-Bu	100	100		99	94	91
н	ph	88		85	85	83	79
Me	Me	47	45	44	43	42	
Me	Et	58	55	51	50	50	48
Me	sec-Bu	60	59	56	54	54	53
Et	Et	68	66	61	59	58	57
Et	n-Bu	71	68	65	62	60	59
t-Bu	t-Bu	99	98	97	96	95	94
<	1	78	76	68	66	64	62
<	Ĵ	71•	66*	64*	63•	59 •	
<		61	57	51	50	49	47
<	\supset	46	45	42	40	39	39

• In 10% soln in CCl₄.

1090

alkyl or aryl substituent, i.e., by increasing $J_{obs.}$ of each monosubstituted derivative by 0.4 c/s and of each disubstituted by 0.8 c/s, as was done with the aldehydes.^{4.10} We thus calculate $J_t = 11.3$ c/s and $J_g = 3.2$ c/s from both t-butyl and *di*-t-butylacetaldehyde oxime O-methyl ethers. The small variation at low temperatures of the coupling constants of these two compounds and the insensitivity of these constants to solvent polarity strengthen the assumption that the two compounds exist mainly in VI and VIII.

In Table 10 are summarized rotamer populations that were calculated from Eqs. (2) and (3). ΔH° values, evaluated from plots of log K vs 1/T, are summarized in Table 11. These values are probably reliable to $\pm 30\%$. In addition to errors of probably 5-10% that are introduced by experimental uncertainties in J_{obs} and temperature control, appreciable but presently undeterminable errors may be introduced by disregarding the contributions to J_{obs} from tortional oscillations and excited vibrational states, and by using only one set of J_t and J_g for all monosubstituted and one set for all disubstituted acetaldehyde derivatives.

The dependence of ΔH° on the α -carbon substituent closely parallels that observed with aldehydes. For example, in the acyclic compounds ΔH° becomes more positive in changing R from methyl to *t*-butyl. ΔH° of the diethyl derivative is more positive

• From 5% soln in CCl₄.

¹⁶ It is assumed that the substituent effect on $J_{\Pi_1 \Pi_{\Omega}}$ is the same as was in aliphatic aldehydes. By comparing the J values of the acetaldehyde, propionaldehyde and cyclohexanecarboxaldehyde derivatives (Table 6) we conclude that this effect must be greater than 0-15 c/s.

than that of the monoethyl; that of the cyclohexyl is similar to that of the dimethyl rather than of the diethyl; and that of the cyclopropyl¹¹ is more positive than that of the cyclopentyl, which in turn is more positive than that of the cyclohexyl.¹²

The effect of solvent polarity on rotamer population supports further the proposed conformations. Because of the higher dipole moment of VI over VII and VIII over IX (R = alkyl), the ratios VI|VII and VIII|IX increase ($J_{obs.}$ increases) with increase of solvent polarity. As expected,¹² phenylacetaldehyde oxime O-methyl ether shows opposite behavior. The arguments previously applied⁴ against bisecting conformations (III and IV) can also be applied here. The most cogent argument provided by our data against III and IV is the increase of $J_{obs.}$ with increase of solvent polarity. Since III would have a higher dipole moment than IV, increase of solvent polarity should decrease $J_{obs.}$ (assume $J_c > J_g$).

It is worth pointing out that the rotamer populations of the oxime O-methyl ethers closely parallel those of olefins¹³ rather than those of aldehydes,⁴ although from structural considerations (X-XII) the reverse might have been expected. Whereas II

is generally more stable than I for aldehydes, the reverse is true for olefins and oxime O-methyl ethers. Although the source of these differences is not clear, electron density and availability at X might be the controlling factor. This point will be considered in subsequent publications in conjunction with the effect of Z (= NZ) on the relative stabilities of I and II.

Conformations of the anti isomers. Since a quantitative interpretation of the coupling constants of the *anti* isomers is impossible, we will present several qualitative interpretations and point out the limitations of each.

Monosubstituted derivatives. If XIII and XIV were the only rotamers of the anti

isomers, the coupling constants would increase with increased solvent polarity when R is alkyl and decrease when R is phenyl. The observed trend (Table 9) is opposite.

- ¹¹ Although we have assumed that the cyclopropyl derivative has three-fold barrier to rotation, our present data do not exclude the possibility that the barrier may be two-fold.
- ¹⁸ For interpretation of these observations the reader should refer to Ref. 4.
- ¹⁹ A. A. Bothner-By, C. Naar-Colin and H. Günther, J. Amer. Chem. Soc. 84, 2748 (1962).

Furthermore, judging from the magnitudes of J_{obs} 's and their dependence on temperature, ΔH° between XIII and XIV would be zero, except when R is t-butyl. Such a conclusion is unreasonable. We are forced therefore to consider XV and XVI.

Since XV would have the higher dipole moment and lower coupling, increase of solvent polarity should decrease $J_{obs.}$, except again $J_{obs.}$ of the phenylacetaldehyde derivative. The data agree reasonably with this interpretation, although the variation of $J_{obs.}$ with solvent polarity is too small. From the magnitudes and temperature dependence of $J_{obs.}$, ΔH° between XV and XVI should be about zero, except when R is t-butyl, in which case XVI would be more stable. Again this conclusion seems unreasonable. The data are best interpreted in terms of XIII and XV as the important rotamers. Since XV would have slightly higher dipole moment than XIII, increased solvent polarity should decrease $J_{obs.}$ only slightly. The nondependence of the relative stabilities of the rotamers on R, except when R is t-butyl is also understandable.

We finally wish to point out that our data do not rigorously exclude conformations where ϕ is other than 0° or 60° (XVII).

Disubstituted derivatives. A priori considerations lead to the conclusion that, regardless of the size of R, the most stable rotamer should be XVIII. The large $J_{obs.}$ and their increase with increased solvent polarity support this conclusion.

Chemical shifts. As in so many other compounds of the general structure XIX, region A is deshielded with respect to B (both A and B in the plane of the molecule). Our interpretation that XVIII is the most stable rotamer of the anti disubstituted

derivatives finds further support in the fact that, whereas *cis* and *trans* α -methyl protons resonate at about the same field, *cis* α -methine protons resonate at appreciably lower fields than *trans*.

Interpretation of solvent effects. The striking feature of the chemical shifts is the effect of benzene on them; i.e. whereas some resonances are shifted upfield, several are shifted downfield (Table 3). Any interpretation of this effect requires specific orientation of benzene by interaction with the solute. The data are adequately interpretable in terms of XX and XXI, whereby the benzene is attracted by the positive

charge on the sp²-hybridized carbon and is closer to the group that is *trans* to methoxy. The s-trans conformation about the N-O bond is chosen in accordance with formaldoxime¹⁴ and with p-p lone pair electron repulsions.¹⁵ Models XX and XXI require that the methoxy be deshielded in benzene, as is indeed the case. Positions A and A', and to a lesser extent A" and B", would be deshielded, whereas B and B' would be shielded. Since cis-a-methine protons spend most time in A' it is understandable that they are shifted downfield by benzene. The only trans-a-methine that spends all time in A is that of di-t-butylacetaldehyde derivative and it is indeed the only trans-amethine that is shifted downfield. Consistent with the proposed models¹⁶ is the small downfield shift of cis-a-methylene protons, thus further supporting the conclusions drawn from spin-spin coupling that XIII and XV are significantly populated. Finally, the fact that the only $cis-\alpha$ -methyl and $cis-\beta$ -methyl protons shifted downfield by benzene are those of methyl and ethyl t-butyl ketone derivatives suggests XXI as the model for these compounds. It is expected that when the trans group is t-butyl repulsive interactions between B and B' in XX will force the cis group to assume a bisecting conformation.

¹⁴ I. N. Levine, J. Chem. Phys. 38, 2326 (1963).

¹⁸ N. L. Owen and N. Sheppard, Proc. Chem. Soc. 264 (1963).

¹⁶ Our interpretation should not be construed as implying a one to one solvent-solute complex.

syn-anti *Isomers*. The greater stability of XXII over XXIII is another case demonstrating the importance of attractive forces between two groups, when at

least one group has available polarizable electrons. The greater stability of XXIV over XXV when X = Y = Cl,¹⁷ Br,¹⁸ F,¹⁹ X = Me, Y = Cl,²⁰ Br,²¹ CN²³ has been established.

The large dependence of the ratio XXVI XXVII on R is best understood in terms of methoxy-phenyl interactions in XXVI that force the phenyl out of conjugation

with the C = N, and in terms of phenyl-R interactions in XXVII. As R increases in size the latter interactions force the phenyl out of conjugation with the C = N. Thus, when R is isopropyl complete loss of conjugation (XXVIII) forces the equilibrium in favor of XXVI. The UV spectra amply justify this argument.

EXPERIMENTAL

Preparation of oxime O-methyl ethers. To an aqueous soln of 0-1 mole aldehyde of ketone, 0-11 mole methoxylamine hydrochloride and 0-11 mole AcONa3H₈O was added 95% EtOH until the soln cleared. After 20 hr reflux the soln was extracted 3 times with ether. The ether layer was washed 3 times with 5% NaHCO₃aq, once with water and dried. Distillation gave the oxime ether in 50-70% yield. The oxime ethers are clear, sweet smelling liquids that boil 10-20° higher than the corresponding carbonyl compounds.

NMR spectra were determined at 60 Mc. on a Model A-60 spectrometer (Varian Associated Palo Alto, Calif.). Undegassed solutions were used with TMS as internal reference.

UV spectra were taken with a Cary 14 recording spectrophotometer.

Acknowledgement—We thank the United States Atomic Energy Commission for financial support Grant COO-1189-15.

¹⁷ K. S. Pitzer and J. L. Hollenberg, J. Amer. Chem. Soc. 76, 1493 (1954).

- ¹⁶ J. M. Dowling, P. G. Puranik, A. G. Meister and S. I. Miller, J. Chem. Phys. 26, 233 (1957).
- ¹⁹ N. C. Craig and E. A. Entemann, J. Amer. Chem. Soc. 83, 3047 (1961).
- ³⁰ R. A. Beaudet, J. Chem. Phys. 40, 2705 (1964).

²¹ P. S. Skell and R. G. Allen, J. Amer. Chem. Soc. 80, 5997 (1958).

⁴³ J. N. Butler and R. D. McAlpine, Canad. J. Chem. 41, 2487 (1963).